Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ai-Yun Fu,^a* Da-Qi Wang^b and Fu-Ming Wang^a

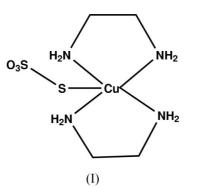
^aDepartment of Chemistry, Dezhou University, Shandong, Dezhou 253023, People's Republic of China, and ^bDepartment of Chemistry, Liaocheng University, Shandong, Liaocheng 252059, People's Republic of China

Correspondence e-mail: aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.038 wR factor = 0.099 Data-to-parameter ratio = 14.9

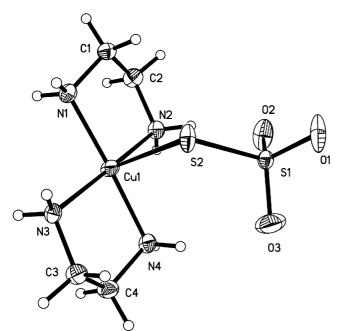
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Bis(ethylenediamine- $\kappa^2 N, N'$)(thiosulfato- κS)-copper(II)

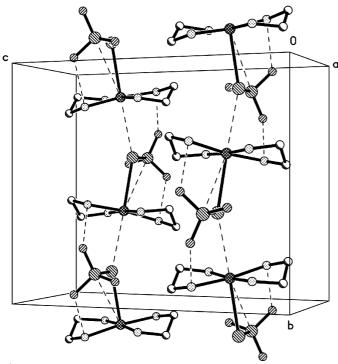
The title complex, $[Cu(S_2O_3)(C_2H_8N_2)_2]$, exhibits a slightly distorted square-pyramidal geometry. The copper(II) atom is five-coordinated by four N atoms from two ethylenediamine molecules, and one S-atom from the thiosulfate anion. The crystal structure is stabilized by weak intermolecular $Cu \cdots S$ interactions and $N-H \cdots O$ hydrogen bonds.

Received 24 August 2004 Accepted 8 September 2004 Online 30 September 2004

Comment


The asymmetric unit of the title compound, (I), contains one monomeric five-coordinate cupric complex. The molecular structure of (I) is illustrated in Fig. 1 and selected bond distances and angles are given in Table 1. The Cu atom is coordinated by two ethylenediamine ligands *via* atoms N1, N2, N3 and N4 [Cu–N bond distances range from 2.016 (3) to 2.023 (3) Å], and one thiosulfate anion *via* atom S2 atom [Cu1–S2 = 2.8614 (13) Å]. Other bond lengths and angles are normal.

The complex exhibits a slightly distorted square-pyramidal geometry about the copper(II) atom, with the apical position occupied by atom S2 of the thiosulfate ligand. The Cu atom is displaced by 0.095 (1) Å from the basal plane defined by atoms N1, N2, N3 and N4. This situation is different from that in the similar compound aquadichloro(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)copper(II) (Lemoine *et al.*, 2003), where the Cu atom is displaced by 0.3074 (6) Å out of the basal plane defined by atoms N, O and two Cl atoms. There the distance between the apical N atoms and the Cu atom is 2.230 (2) Å, compared to 2.8614 (13) Å in (I) for distance Cu1-S2.


The distance $Cu1\cdots S2^i$ (see Table 1 for symmetry code) is 3.2304 (14) Å, showing that there are weak intermolecular $Cu\cdots S$ interactions that link the molecules together (Fig. 2). All the ethylenediamine amino H atoms and the three thiosulfate O atoms participate in intra- and intermolecular N-H \cdots O hydrogen bonds (Table 2 and Fig. 2). In this manner, the crystal structure is stabilized and a two-dimensional

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of the title compound (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

Crystal packing of (I), showing the weak intermolecular Cu···S interactions, and the N···O hydrogen-bonded interactions, as dashed lines. H atoms have been omitted for clarity.

hydrogen-bonded network is formed extending in the ab plane.

Experimental

The title compound was synthesized as follows: to a methanol solution of ethylenediamine (1.0 mmol) and Na₂S₂O₃·5H₂O (0.5 mmol) was added a methanol solution of CuSO₄·6H₂O (0.5 mmol), with stirring at reflux. The mixture was stirred continuously for 6 h, and then cooled and filtered. Slow evaporation of the solution give a blue crystalline compound (I). Crystals suitable for X-ray analysis were obtained by diffusion of diethyl ether into an acetonitrile solution of (I) over a period of six days.

.942

1893 independent reflections

 $R_{\rm int}=0.034$ $\theta_{\text{max}} = 25.0^{\circ}$ $h = -6 \rightarrow 7$ $k = -11 \rightarrow 14$

 $l = -16 \rightarrow 16$

1356 reflections with $I > 2\sigma(I)$

Crystal data

$D_{\rm r} = 1.803 {\rm Mg} {\rm m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 1
reflections
$\theta = 2.9-26.4^{\circ}$
$\mu = 2.38 \text{ mm}^{-1}$
T = 293 (2) K
Block, blue
$0.29\times0.17\times0.15~\mathrm{mm}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.535, T_{\max} = 0.703$ 5507 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0621P)^2]$
$wR(F^2) = 0.099$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.93	$(\Delta/\sigma)_{\rm max} < 0.001$
1893 reflections	$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
127 parameters	$\Delta \rho_{\rm min} = -0.76 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-N4	2.016 (3)	Cu1-N2	2.023 (3)
Cu1-N1	2.017 (3)	Cu1-S2	2.8614 (13)
Cu1-N3	2.018 (3)	Cu1-S2 ⁱ	3.2304 (14)
N4-Cu1-N1	175.32 (11)	N3-Cu1-S2	91.24 (8)
N4-Cu1-N3	84.79 (11)	N2-Cu1-S2	94.89 (9)
N1-Cu1-N3	95.39 (11)	$N4-Cu1-S2^{i}$	88.98 (8)
N4-Cu1-N2	94.85 (11)	$N1-Cu1-S2^{i}$	86.37 (8)
N1-Cu1-N2	84.47 (11)	$N3-Cu1-S2^{i}$	86.07 (8)
N3-Cu1-N2	173.87 (11)	$N2-Cu1-S2^{i}$	87.80 (9)
N4-Cu1-S2	92.16 (8)	S2-Cu1-S2i	176.975 (16)
N1-Cu1-S2	92.51 (8)		. ,

Symmetry code: (i) $\frac{1}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z$.

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1B \cdots O2^{ii}$	0.90	2.09	2.955 (4)	161
$N2-H2A\cdots O2$	0.90	2.03	2.889 (4)	160
$N2 - H2B \cdots O1^{iii}$	0.90	2.46	3.164 (4)	135
$N3-H3B\cdotsO1^{iv}$	0.90	2.04	2.888 (4)	156
N4-H4 A ···O1 ⁱⁱⁱ	0.90	2.00	2.840 (4)	155
$N4-H4B\cdots O3$	0.90	2.33	3.201 (5)	163

Symmetry codes: (ii) 1 + x, y, z; (iii) $-\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iv) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$.

All the H atoms were placed in idealized positions and constrained to ride on their parent atoms, with N-H distances of 0.90 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm N})$, and C-H distances of 0.97 Å and $U_{\rm iso}({\rm H}) =$ $1.2U_{eq}(C).$

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

References

- Lemoine, P., Viossat B. & Daran, J.-C. (2003). Acta Cryst. E59, m17–m19. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXED: University of Coungel, Coundary. Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.